1. On the grid, shade the region that satisfies all three of these inequalities

$$
y>-4 \quad x<2 \quad y<2 x+1
$$

(Total for Question $19=4$ marks)
2. The region \mathbf{R} satisfies the inequalities

$$
x \geq 2, \quad y \geq 1, \quad x+y \leq 6
$$

On the grid below, draw straight lines and use shading to show the region \mathbf{R}.

(Total 3 marks)
3. The graphs of the straight lines with equations

$$
\begin{aligned}
& 3 y+2 x=12 \quad \text { and } \\
& y=x-1
\end{aligned}
$$

have been drawn on the grid.

$3 y+2 x>12$

$$
y<x-1
$$

$$
x<6
$$

x and y are integers.
On the grid, mark with a cross (\times), each of the four points which satisfies all 3 inequalities.
(Total 3 marks)
4. On the grid, show by shading, the region which satisfies all three of the inequalities.

$$
x<3 \quad y>-2 \quad y<x
$$

Label the region \mathbf{R}.

5. $-2<x \leq 1 \quad y>-2 \quad y<x+1$
x and y are integers.
On the grid, mark with a cross (\mathbf{x}), each of the six points which satisfies all these 3 inequalities.

(Total 3 marks)
6. (a) On the grid below, draw straight lines and use shading to show the region \mathbf{R} that satisfies the inequalities

$$
x \geq 2 \quad y \geq x \quad x+y \leq 6
$$

The point P with coordinates (x, y) lies inside the region \mathbf{R}. x and y are integers.
(b) Write down the coordinates of all the points of \mathbf{R} whose coordinates are both integers.
\qquad
7.
$4 x+3 y<12$,
$y<3 x, \quad y>0$, $\boldsymbol{x}>\mathbf{0}$
x and y are both integers.
On the grid, mark with a cross (\times), each of the three points which satisfy all these four inequalities.

