1. On the grid, shade the region that satisfies all three of these inequalities

$$v > -4$$

$$y > -4 \qquad \qquad x < 2 \qquad \qquad y < 2x + 1$$

(Total for Question 19 = 4 marks)

2. The region \mathbf{R} satisfies the inequalities

$$x \ge 2$$
, $y \ge 1$, $x + y \le 6$

On the grid below, draw straight lines and use shading to show the region \mathbf{R} .

3. The graphs of the straight lines with equations

$$3y + 2x = 12$$
 and

$$y = x - 1$$

have been drawn on the grid.

$$3y + 2x > 12$$

$$y < x - 1$$

x and y are integers.

On the grid, mark with a cross (×), each of the **four** points which satisfies **all** 3 inequalities.

(Total 3 marks)

4. On the grid, show by shading, the region which satisfies all three of the inequalities.

x < 3

y > -2

y < x

Label the region **R**.

5.
$$-2 < x \le 1$$
 $y > -2$ $y < x + 1$

x and y are integers.

On the grid, mark with a cross (\mathbf{x}), each of the six points which satisfies **all** these 3 inequalities.

(Total 3 marks)

6. (a) On the grid below, draw straight lines and use shading to show the region \mathbf{R} that satisfies the inequalities

The point P with coordinates (x, y) lies inside the region \mathbf{R} . x and y are **integers**.

(b) Write down the coordinates of **all** the points of $\bf R$ whose coordinates are both integers.

.....

(Total 5 marks)

(2)

7.
$$4x + 3y < 12$$
, $y < 3x$, $y > 0$, $x > 0$

$$y < 3x$$
,

$$y > 0$$
,

x and y are both integers.

On the grid, mark with a cross (×), each of the three points which satisfy all these four inequalities.

(3)

(Total 5 marks)